18676 measured reflections

 $R_{\rm int} = 0.042$

3838 independent reflections

3472 reflections with $I > 2\sigma(I)$

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

1,1,3-Trioxo-2,3-dihydro-1,2benzisothiazol-2-ylmethyl 4-phenylpiperazine-1-carbodithioate

Mehmet Akkurt,^a* Şerife Pınar Yalçın,^a Özlen Güzel,^b Aydın Salman^b and Orhan Büyükgüngör^c

^aDepartment of Physics, Faculty of Arts and Sciences, Erciyes University, 38039 Kayseri, Turkey, ^bDepartment of Pharmaceutical Chemistry, Faculty of Pharmacy, Istanbul University, 34116 Istanbul, Turkey, and ^cDepartment of Physics, Faculty of Arts and Sciences, Ondokuz Mayıs University, 55139 Samsun, Turkey Correspondence e-mail: akkurt@erciyes.edu.tr

Received 27 June 2007; accepted 28 June 2007

Key indicators: single-crystal X-ray study; T = 296 K; mean σ (C–C) = 0.003 Å; *R* factor = 0.029; *wR* factor = 0.076; data-to-parameter ratio = 15.2.

In the title molecule, $C_{19}H_{19}N_3O_3S_3$, the mean planes of the benzisothiazole system and the phenyl ring make a dihedral angle of 8.87 (8)°. The piperazine ring has a chair conformation. The crystal structure is stabilized by weak intermolecular $C-H\cdots O$ interactions and weak intramolecular $C-H\cdots S$ interactions.

Related literature

For related literature, see: Ateş *et al.* (1995); Cao *et al.* (2005); Çapan *et al.* (1993); Cremer & Pople (1975); Farghaly & Moharram (1999); Günay *et al.* (1999); Güzel & Salman (2006); Imamura *et al.* (2001); Scozzafava *et al.* (2000); Xu *et al.* (2002).

Experimental

Crystal data $C_{19}H_{19}N_3O_3S_3$ $M_r = 433.58$ Triclinic, $P\overline{1}$ a = 8.0390 (5) Å b = 11.7619 (7) Å c = 11.8796 (8) Å $\alpha = 109.029$ (5)° $\beta = 103.791$ (5)°

 $\gamma = 102.326 (5)^{\circ}$ $V = 978.02 (12) \text{ Å}^3$ Z = 2Mo K\alpha radiation $\mu = 0.41 \text{ mm}^{-1}$ T = 296 K $0.72 \times 0.68 \times 0.57 \text{ mm}$

Data collection

Stoe IPDSII diffractometer Absorption correction: integration (X-RED32; Stoe & Cie, 2002) $T_{min} = 0.759, T_{max} = 0.802$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.029$	253 parameters
$wR(F^2) = 0.076$	H-atom parameters constrained
S = 1.04	$\Delta \rho_{\rm max} = 0.38 \text{ e } \text{\AA}^{-3}$
3838 reflections	$\Delta \rho_{\rm min} = -0.34 \text{ e } \text{\AA}^{-3}$

Table 1 Hydrogen-bond geometry (Å, °).

$D - \mathbf{H} \cdot \cdot \cdot A$	$D-\mathrm{H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$C2-H2\cdots O2^{i}$	0.93	2.43	3.226 (2)	143
C8−H8B···S3	0.97	2.54	3.1134 (18)	117
C10-H10AS3	0.97	2.56	3.075 (2)	113
C13−H13B····S2	0.97	2.38	2.9324 (18)	116

Symmetry code: (i) -x + 1, -y, -z + 1.

Data collection: X-AREA (Stoe & Cie, 2002); cell refinement: X-AREA; data reduction: X-RED32 (Stoe & Cie, 2002); program(s) used to solve structure: SIR97 (Altomare *et al.*, 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2003).

The authors thank the Faculty of Arts and Sciences, Ondokuz Mayıs University, Turkey, for use of the Stoe IPDS II diffractometer (purchased under grant F.279 of the University Research Fund).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT2418).

References

- Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.
- Ateş, Ö., Cesur, N., Güner, H., Uzun, M., Kiraz, M. & Kaya, D. (1995). *Farmaco*, **50**, 361–364.
- Cao, S.-L., Feng, Y.-P., Jiang, Y.-Y., Liu, S.-Y., Ding, G.-Y. & Li, R.-T. (2005). Bioorg. Med. Chem. Lett. 15, 1915–1917.
- Çapan, G., Ergenç, N., Büyüktimkin, S. & Yuluğ, N. (1993). Sci. Pharm. 61, 243–250.
- Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.
- Farghaly, A. O. & Moharram, A. M. (1999). Boll. Chim. Farm. 138, 280-289.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
- Günay, N. S., Çapan, G., Ulusoy, N., Ergenç, N., Ötük, G. & Kaya, D. (1999). *Farmaco*, **54**, 826–831.
- Güzel, Ö. & Salman, A. (2006). Bioorg. Med. Chem. 14, 7804-7815.
- Imamura, H., Ohtake, N., Jona, H., Shimizu, A., Moriya, M., Sato, H., Sugimoto, Y., Ikeura, C., Kiyonaga, H., Nakano, M., Nagano, R., Abe, S., Yamada, K., Hashizume, T. & Morishima, H. (2001). *Bioorg. Med. Chem.* 9, 1571–1578.
- Scozzafava, A., Mastrolorenzo, A. & Supuran, C. T. (2000). Bioorg. Med. Chem. Lett. 10, 1887–1891.
- Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.

Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.

- Stoe & Cie (2002). X-AREA (Version 1.18) and X-RED32 (Version 1.04). Stoe & Cie, Darmstadt, Germany.
- Xu, L. Z., Jiao, K., Zhang, S. S. & Kuang, S. P. (2002). *Bull. Korean Chem. Soc.* 23, 1699–1701.

Acta Cryst. (2007). E63, o3383 [doi:10.1107/S1600536807031595]

1,1,3-Trioxo-2,3-dihydro-1,2-benzisothiazol-2-ylmethyl 4-phenylpiperazine-1-carbodithioate

M. Akkurt, S.P. Yalçin, Ö. Güzel, A. Salman and O. Büyükgüngör

Comment

Considerable interest has been focused on dithiocarbamates which have shown to possess a broad spectrum of biological activities such as fungicidal (Ateş *et al.*, 1995; Günay *et al.*, 1999; Farghaly & Moharram, 1999; Xu *et al.*, 2002) and antibacterial (Günay *et al.*, 1999; Çapan *et al.*, 1993; Imamura *et al.*, 2001) effects. Dithiocarbamates are known also to be active as anticancer agents (Scozzafava *et al.*, 2000; Cao *et al.*, 2005). In our previous report (Güzel & Salman, 2006), (1,1-dioxido-3-oxo-1,2-benzisothiazol-2(3*H*)-yl)methyl N,*N*-disubstituted dithiocarbamate and (1,1-dioxido-3-oxo-1,2-benzisothiazol-2(3*H*)-yl)methyl *O*-alkyldithiocarbonate derivatives have been demonstrated to be potent antimycobacterial and antitumor activities. We now report the crystal structure of (1,1-dioxido-3-oxo-1,2-benzisothiazol-2(3*H*)-yl)methyl 4-phenylpiperazin-1-carbodithioate which has potent antimycobacterial activity.

In the title compound (Fig. 1), all bond lengths and angles are within the normal range. The C1—C7/N1/S1 ring system are almost planar, with the mean deviations of 0.039 (2) Å for C6 and -0.052 (1) Å for N1. The dihedral angle between the C1—C7/N1/S1 ring and the phenyl ring is 8.87 (8)°. The N2/N3/C10—C13 ring system has a chair conformation [puckering parameters (Cremer & Pople, 1975): Q = 0.5601 (18) Å, $\theta = 1.28$ (17) ° and $\phi = 17$ (6)°].

The crystal structure is stabilized by weak intermolecular C—H \cdots O interactions (Fig. 1) and weak intramolecular C—H \cdots S interactions (Table 1).

Experimental

The ethanolic solution of 2-(chloromethyl)-1,2-benzisothiazol-3(2*H*)-on 1,1-dioxide (5 mmol) and potassium 4-phenylpiperazin-1-carbodithioate (5 mmol) were refluxed for 1 h. After evaporation of the solvent *in vacuo*, products were washed with water and purified by recrystallization from ethanol (Güzel & Salman, 2006).

Yellow powder (62%); mp 445–450 K; IR (KBr): v 1733 (C=O), 1243 (C=S). ¹H-NMR (CDCl₃ / 200 MHz): δ 3.15 (t, 4H, J=5.15 Hz, pip. C_{3,5}—H), 4.13 (br s, 4H, pip. C_{2,6}—H), 5.70 (s, 2H, N—CH₂—S), 6.69–6.77 (m, 3H, phenyl C_{3,4,5}—H), 7.06–7.14 (m, 2H, phenyl C_{2,6}—H), 7.71–7.81 (m, 3H, bzi. C_{5,6,7}—H), 7.91–7.95 (m, 1H, bzi. C₄—H); EIMS: m/z 433 (*M*⁺). Analysis calculated for C₁₉H₁₉N₃O₃S₃: C 52.63, H 4.42, N 9.69, S 22.19%. Found: C 53.01, H 4.32, N 9.57, S 22.15%.

Refinement

All H atoms were positioned geometrically, with C—H = 0.93-0.97Å and constrained to ride on their parent atoms, with $U_{iso}(H) = 1.2U_{eq}(C)$.

Figures

Fig. 1. An *ORTEP* view of the title compound with the atom numbering scheme. Displacement ellipsoids for non-H atoms are drawn at the 30% probability level.

Fig. 2. View of the weak intermolecular C—H···O hydrogen bonding interactions in the unit cell.

1,1,3-Trioxo-2,3-dihydro-1,2-benzisothiazol-2-ylmethyl 4-phenylpiperazine-1-carbodithioate

Crystal data	
C ₁₉ H ₁₉ N ₃ O ₃ S ₃	Z = 2
$M_r = 433.58$	$F_{000} = 452$
Triclinic, PT	$D_{\rm x} = 1.472 \ {\rm Mg \ m}^{-3}$
Hall symbol: -P 1	Mo $K\alpha$ radiation $\lambda = 0.71073$ Å
a = 8.0390 (5) Å	Cell parameters from 41005 reflections
<i>b</i> = 11.7619 (7) Å	$\theta = 2.8 - 27.9^{\circ}$
c = 11.8796 (8) Å	$\mu = 0.41 \text{ mm}^{-1}$
$\alpha = 109.029 (5)^{\circ}$	<i>T</i> = 296 K
$\beta = 103.791 \ (5)^{\circ}$	Prism, colourless
$\gamma = 102.326 (5)^{\circ}$	$0.72 \times 0.68 \times 0.57 \text{ mm}$
$V = 978.02 (12) \text{ Å}^3$	
Data collection	
Stee IDDS2	

diffractometer	3838 independent reflections
Monochromator: plane graphite	3472 reflections with $I > 2\sigma(I)$
Detector resolution: 6.67 pixels mm ⁻¹	$R_{\rm int} = 0.042$
T = 296 K	$\theta_{\text{max}} = 26.0^{\circ}$
ω scans	$\theta_{\min} = 2.8^{\circ}$
Absorption correction: integration (X-RED32; Stoe & Cie, 2002)	$h = -9 \rightarrow 9$
$T_{\min} = 0.759, T_{\max} = 0.802$	$k = -14 \rightarrow 14$
18676 measured reflections	$l = -14 \rightarrow 14$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites

 $R[F^2 > 2\sigma(F^2)] = 0.029$ H-atom parameters constrained $wR(F^2) = 0.076$ $w = 1/[\sigma^2(F_o^2) + (0.0359P)^2 + 0.2749P]$ $where P = (F_o^2 + 2F_c^2)/3$ S = 1.04S = 1.04 $(\Delta/\sigma)_{max} < 0.001$ 3838 reflections $\Delta\rho_{max} = 0.38 \text{ e Å}^{-3}$ 253 parameters $\Delta\rho_{min} = -0.34 \text{ e Å}^{-3}$ Primary atom site location: structure-invariant direct Γ direction encoder

Primary atom site location: structure-invariant direct methods Extinction correction: none

Special details

Geometry. Bond distances, angles *etc.* have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F^2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted *R*-factors *wR* and all goodnesses of fit S are based on F^2 , conventional *R*-factors *R* are based on F, with F set to zero for negative F^2 . The observed criterion of $F^2 > 2$ sigma(F^2) is used only for calculating -R-factor-obs *etc*. and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on F, and *R*-factors based on ALL data will be even larger.

	x	У	Ζ	$U_{\rm iso}$ */ $U_{\rm eq}$
S1	0.29371 (4)	0.07783 (3)	0.52191 (3)	0.0315 (1)
S2	0.16223 (6)	0.36814 (4)	0.44690 (4)	0.0465 (1)
S3	0.29352 (7)	0.19904 (4)	0.26112 (4)	0.0552 (2)
01	0.16370 (15)	-0.03381 (10)	0.42204 (10)	0.0460 (3)
O2	0.46502 (14)	0.12296 (10)	0.51054 (10)	0.0410 (3)
O3	0.13194 (18)	0.32432 (11)	0.71142 (13)	0.0584 (4)
N1	0.20056 (16)	0.19455 (11)	0.55194 (12)	0.0372 (4)
N2	0.34280 (18)	0.44371 (12)	0.31506 (13)	0.0455 (4)
N3	0.32077 (17)	0.60864 (12)	0.18385 (12)	0.0404 (4)
C1	0.31709 (18)	0.07322 (13)	0.67057 (13)	0.0335 (4)
C2	0.3811 (2)	-0.00962 (15)	0.71439 (15)	0.0428 (5)
C3	0.3814 (2)	0.00154 (19)	0.83429 (17)	0.0540 (6)
C4	0.3238 (3)	0.0924 (2)	0.90612 (16)	0.0590 (6)
C5	0.2636 (2)	0.17575 (17)	0.86153 (15)	0.0520 (5)
C6	0.26044 (19)	0.16530 (13)	0.74175 (13)	0.0380 (4)
C7	0.1914 (2)	0.23932 (14)	0.67370 (15)	0.0405 (4)
C8	0.0837 (2)	0.21508 (15)	0.45184 (16)	0.0444 (5)
С9	0.27614 (19)	0.34041 (14)	0.33358 (14)	0.0386 (4)
C10	0.4363 (2)	0.44362 (17)	0.22371 (18)	0.0514 (6)
C11	0.3388 (2)	0.48396 (16)	0.12594 (16)	0.0483 (5)
C12	0.2318 (2)	0.61100 (14)	0.27846 (15)	0.0421 (4)
C13	0.3282 (2)	0.56965 (14)	0.37590 (16)	0.0474 (5)
C14	0.25681 (19)	0.66404 (14)	0.10005 (15)	0.0407 (4)

Fractional atomic coordinates and isoti	onic or equivalent isotro	onic displacement	narameters ($(Å^2)$)
i racional alonne coorainales ana ison		spic dispideement	purumerers	11)	/

C15	0.2437 (2)	0.61482 (18)	-0.02674 (16)	0.0531 (5)
C16	0.1895 (2)	0.6746 (2)	-0.10496 (18)	0.0631 (6)
C17	0.1431 (2)	0.7823 (2)	-0.0613 (2)	0.0634 (7)
C18	0.1535 (3)	0.83086 (18)	0.0631 (2)	0.0619 (7)
C19	0.2096 (2)	0.77347 (16)	0.14331 (18)	0.0522 (6)
H2	0.42200	-0.06990	0.66600	0.0510*
Н3	0.42140	-0.05360	0.86680	0.0650*
H4	0.32560	0.09760	0.98620	0.0710*
Н5	0.22590	0.23760	0.91090	0.0620*
H8A	-0.03450	0.20420	0.46140	0.0530*
H8B	0.06920	0.15030	0.37150	0.0530*
H10A	0.44220	0.35920	0.18260	0.0620*
H10B	0.55890	0.50130	0.26710	0.0620*
H11A	0.40470	0.48600	0.06770	0.0580*
H11B	0.21970	0.42230	0.07810	0.0580*
H12A	0.10800	0.55520	0.23680	0.0500*
H12B	0.22930	0.69630	0.32010	0.0500*
H13A	0.44800	0.63030	0.42370	0.0570*
H13B	0.26230	0.56760	0.43420	0.0570*
H15	0.27190	0.54080	-0.05910	0.0640*
H16	0.18450	0.64110	-0.18870	0.0760*
H17	0.10550	0.82150	-0.11460	0.0760*
H18	0.12230	0.90380	0.09400	0.0740*
H19	0.21580	0.80840	0.22720	0.0630*

Atomic displacement parameters (\AA^2)

	U^{11}	U ²²	U ³³	U^{12}	U^{13}	U^{23}
S1	0.0363 (2)	0.0290 (2)	0.0322 (2)	0.0115 (1)	0.0144 (1)	0.0131 (1)
S2	0.0589 (2)	0.0422 (2)	0.0546 (2)	0.0244 (2)	0.0265 (2)	0.0284 (2)
S3	0.0783 (3)	0.0425 (2)	0.0592 (3)	0.0326 (2)	0.0289 (2)	0.0251 (2)
O1	0.0512 (6)	0.0366 (5)	0.0378 (5)	0.0078 (5)	0.0094 (5)	0.0074 (4)
O2	0.0429 (5)	0.0425 (6)	0.0495 (6)	0.0176 (4)	0.0258 (5)	0.0229 (5)
O3	0.0701 (8)	0.0444 (6)	0.0756 (8)	0.0302 (6)	0.0432 (7)	0.0212 (6)
N1	0.0429 (6)	0.0368 (6)	0.0424 (7)	0.0192 (5)	0.0197 (5)	0.0206 (5)
N2	0.0558 (8)	0.0368 (7)	0.0522 (8)	0.0176 (6)	0.0254 (6)	0.0207 (6)
N3	0.0424 (6)	0.0386 (6)	0.0428 (7)	0.0144 (5)	0.0173 (5)	0.0163 (5)
C1	0.0330 (6)	0.0347 (7)	0.0327 (7)	0.0072 (5)	0.0125 (5)	0.0143 (6)
C2	0.0425 (8)	0.0489 (9)	0.0465 (8)	0.0180 (7)	0.0178 (7)	0.0262 (7)
C3	0.0528 (9)	0.0714 (12)	0.0513 (10)	0.0214 (8)	0.0178 (8)	0.0396 (9)
C4	0.0634 (11)	0.0774 (13)	0.0381 (8)	0.0157 (9)	0.0182 (8)	0.0285 (9)
C5	0.0585 (10)	0.0535 (10)	0.0390 (8)	0.0131 (8)	0.0227 (7)	0.0107 (7)
C6	0.0383 (7)	0.0352 (7)	0.0365 (7)	0.0066 (6)	0.0150 (6)	0.0106 (6)
C7	0.0416 (7)	0.0336 (7)	0.0494 (8)	0.0117 (6)	0.0233 (7)	0.0147 (6)
C8	0.0372 (7)	0.0449 (8)	0.0566 (9)	0.0135 (6)	0.0132 (7)	0.0284 (7)
C9	0.0394 (7)	0.0386 (7)	0.0392 (7)	0.0158 (6)	0.0079 (6)	0.0188 (6)
C10	0.0565 (9)	0.0497 (9)	0.0671 (11)	0.0260 (8)	0.0351 (9)	0.0305 (8)
C11	0.0589 (10)	0.0457 (9)	0.0528 (9)	0.0242 (7)	0.0318 (8)	0.0207 (7)

C12	0.0450 (8)	0.0343 (7)	0.0466 (8)	0.0125 (6)	0.0196 (7)	0.0126 (6)
C13	0.0628 (10)	0.0338 (7)	0.0460 (8)	0.0124 (7)	0.0223 (8)	0.0154 (7)
C14	0.0335 (7)	0.0389 (8)	0.0449 (8)	0.0064 (6)	0.0099 (6)	0.0163 (6)
C15	0.0526 (9)	0.0563 (10)	0.0468 (9)	0.0163 (8)	0.0135 (7)	0.0188 (8)
C16	0.0539 (10)	0.0788 (13)	0.0497 (10)	0.0104 (9)	0.0078 (8)	0.0307 (10)
C17	0.0466 (9)	0.0708 (12)	0.0734 (13)	0.0080 (9)	0.0063 (9)	0.0460 (11)
C18	0.0572 (10)	0.0500 (10)	0.0851 (14)	0.0177 (8)	0.0212 (10)	0.0364 (10)
C19	0.0573 (10)	0.0433 (9)	0.0575 (10)	0.0163 (7)	0.0193 (8)	0.0214 (8)
Geometric param	neters (Å, °)					
S1—O1		1.4252 (12)	C14	—C15	1.395	(2)
S1—O2		1.4212 (12)	C14	—C19	1.391	(3)
S1—N1		1.6792 (14)	C15	—C16	1.383	(3)
S1—C1		1.7509 (15)	C16	—C17	1.371	(3)
S2—C8		1.8012 (19)	C17	—C18	1.374	(3)
S2—C9		1.7850 (16)	C18	—C19	1.383	(3)
S3—C9		1.6579 (17)	C2-	-H2	0.930	0
O3—C7		1.201 (2)	C3–	—Н3	0.930	0
N1—C7		1.395 (2)	C4	-H4	0.930	0
N1—C8		1.451 (2)	C5–	-H5	0.930	0
N2—C9		1.328 (2)	C8–	-H8A	0.970	0
N2—C10		1.460 (2)	C8–	-H8B	0.970	0
N2—C13		1.465 (2)	C10	—H10A	0.970	0
N3—C11		1.458 (2)	C10	—H10B	0.970	0
N3—C12		1.465 (2)	Cll	—HIIA	0.970	0
N3—C14		1.415 (2)	CII	HIIB	0.970	0
C1 - C2		1.379(2)	C12	HI2A	0.970	0
C1 - C6		1.370(2)	C12	—Н12В	0.970	0
$C_2 = C_3$		1.387(2)	C13	—ПІЗА 1112D	0.970	0
$C_3 = C_4$		1.373(3) 1.377(3)	C15	—пізь ніз	0.970	0
C4—C5		1.377(3) 1 381(2)	C15	—H16	0.930	0
C6—C7		1.331(2) 1 473(2)	C10	—H17	0.930	0
C10—C11		1 508 (3)	C18	—H18	0.930	0
C12—C13		1.509 (2)	C19	—Н19	0.930	0
S1…O2 ⁱ		3.3476 (13)	C15	···H12A ^v	3.030	0
S2…O3		3.4010 (15)	C15	…H11B	2.910	0
S3…O2		3.4335 (12)	C16	···H12A ^v	2.860	0
S2…H13B		2.3800	C17	····H3 ^x	3.100	0
S2…H13A ⁱⁱ		3.1400	C18	···H5 ^{vii}	3.100	0
S3…H4 ⁱⁱⁱ		3.1900	C19	···H12B	2.530	0
S3…H8B		2.5400	Н2…	$\cdot S3^{i}$	3.110	0
S3…H10A		2.5600	Н2∙-	·O2 ⁱ	2.430	0
S3…H18 ^{iv}		3.1700	Н3…	·C17 ^{ix}	3.100	0
$S3 \cdots H2^{i}$		3.1100	H4··	··S3 ^{viii}	3.190	0
$S3 \cdots H17^{v}$		3.1800	Н5…	··O3	2.880	0

O1···C7 ^{vi}	3.000 (2)	H5…C11 ^{viii}	2.9500
O1…C6 ^{vi}	3.229 (2)	H5…H11B ^{viii}	2.4400
O2…C12 ⁱⁱ	3.276 (2)	H5…C18 ^{vii}	3.1000
O2···C2 ⁱ	3.226 (2)	Н8А…ОЗ	2.6800
O2…S3	3.4335 (12)	H8A…C2 ^{vi}	2.9600
O2…S1 ⁱ	3.3476 (13)	H8B…S3	2.5400
O2···O2 ⁱ	3.0058 (17)	H8B…O1	2.6400
O2···C13 ⁱⁱ	3.292 (2)	H10A…S3	2.5600
O3···C12 ^{vii}	3.194 (2)	H10B…H13A	2.4700
O3…S2	3.4010 (15)	H10B····O3 ⁱⁱ	2.7600
O1…H19 ^{iv}	2.6400	H10B····C7 ⁱⁱ	3.0200
O1…H8B	2.6400	H11A…C15	2.5500
O2…H12B ⁱⁱ	2.6900	H11A…H15	2.0000
O2…H13A ⁱⁱ	2.6300	H11A…H11A ^{xi}	2.5200
O2…H2 ⁱ	2.4300	H11B…C15	2.9100
O3…H8A	2.6800	H11B…H5 ⁱⁱⁱ	2.4400
O3…H15 ^{viii}	2.8200	H11B…H12A	2.5100
O3…H5	2.8800	H11B…H15	2.5200
O3…H10B ⁱⁱ	2.7600	H12A…H11B	2.5100
O3…H12A ^{vii}	2.7000	H12A…O3 ^{vii}	2.7000
O3…H12B ^{vii}	2.7800	H12A…C15 ^v	3.0300
N2…N3	2.866 (2)	H12A…C16 ^v	2.8600
N3…N2	2.866 (2)	H12B…C19	2.5300
C2···O2 ⁱ	3.226 (2)	H12B…H19	1.9800
C2···C19 ⁱⁱ	3.433 (3)	H12B…O2 ⁱⁱ	2.6900
C3···C18 ⁱⁱ	3.531 (3)	H12B…O3 ^{vii}	2.7800
C6…O1 ^{vi}	3.229 (2)	H13A…H10B	2.4700
C7…O1 ^{vi}	3.000 (2)	H13A…S2 ⁱⁱ	3.1400
C12···O2 ⁱⁱ	3.276 (2)	H13A…O2 ⁱⁱ	2.6300
C12···O3 ^{vii}	3.194 (2)	H13A····C9 ⁱⁱ	3.0500
C13····O2 ⁱⁱ	3.292 (2)	H13B…S2	2.3800
C18····C3 ⁱⁱ	3.531 (3)	H15····O3 ⁱⁱⁱ	2.8200
C19····C2 ⁱⁱ	3.433 (3)	H15…C11	2.4700
C2…H8A ^{vi}	2.9600	H15…H11A	2.0000
C3···H17 ^{ix}	3.0400	H15…H11B	2.5200
C7…H10B ⁱⁱ	3.0200	H17…C3 ^x	3.0400
C9···H13A ⁱⁱ	3.0500	H17S3 ^v	3.1800
C11…H15	2.4700	H18····S3 ^{xii}	3.1700
C11···H5 ⁱⁱⁱ	2.9500	H19…O1 ^{xii}	2.6400
С12…Н19	2.6100	H19…C12	2.6100
C15…H11A	2.5500	H19…H12B	1.9800

$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
C2—C3—C4121.33 (19)N3—C11—H11B109.00C3—C4—C5121.15 (17)C10—C11—H11A109.00C4—C5—C6118.40 (16)C10—C11—H11B109.00C1—C6—C5119.78 (15)H11A—C11—H11B108.00C1—C6—C7113.08 (13)N3—C12—H12A109.00C5—C6—C7127.04 (15)N3—C12—H12B109.00O3—C7—N1122.63 (16)C13—C12—H12B109.00O3—C7—C6127.78 (15)C13—C12—H12B109.00N1—C7—C6109.58 (14)H12A—C12—H12B108.00S2—C8—N1115.09 (12)N2—C13—H13A110.00S2—C9—S3122.16 (10)N2—C13—H13B110.00S3—C9—N2125.00 (13)C12—C13—H13B110.00N3—C11—C10111.57 (14)C14—C15—H15120.00N3—C12—C13111.54 (14)C16—C15—H15120.00N2—C13—C12100.59 (14)C15—C16—H16119.00
C3—C4—C5121.15 (17)C10—C11—H11A109.00C4—C5—C6118.40 (16)C10—C11—H11B109.00C1—C6—C5119.78 (15)H11A—C11—H11B108.00C1—C6—C7113.08 (13)N3—C12—H12A109.00C5—C6—C7127.04 (15)N3—C12—H12B109.00O3—C7—N1122.63 (16)C13—C12—H12B109.00O3—C7—C6127.78 (15)C13—C12—H12B109.00N1—C7—C6109.58 (14)H12A—C12—H12B108.00S2—C9—S3122.16 (10)N2—C13—H13A110.00S2—C9—N2112.84 (12)C12—C13—H13B110.00S3—C9—N2125.00 (13)C12—C13—H13B110.00N3—C11—C10111.57 (14)C14—C15—H15120.00N3—C12—C13111.54 (14)C16—C15—H15120.00N3—C12—C13111.54 (14)C16—C15—H15120.00N2—C13—C12110.59 (14)C15—C16—H16119.00
C4—C5—C6118.40 (16)C10—C11—H11B109.00C1—C6—C5119.78 (15)H11A—C11—H11B108.00C1—C6—C7113.08 (13)N3—C12—H12A109.00C5—C6—C7127.04 (15)N3—C12—H12B109.00O3—C7—N1122.63 (16)C13—C12—H12B109.00O3—C7—C6127.78 (15)C13—C12—H12B109.00N1—C7—C6109.58 (14)H12A—C12—H12B108.00S2—C8—N1115.09 (12)N2—C13—H13A110.00S2—C9—S3122.16 (10)N2—C13—H13B110.00S3—C9—N2125.00 (13)C12—C13—H13B110.00N3—C11—C10111.57 (14)C14—C15—H15120.00N3—C12—C13111.54 (14)C16—C15—H15120.00N2—C13—C14110.59 (14)C15—C16—H16119.00
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
C1—C6—C7113.08 (13)N3—C12—H12A109.00C5—C6—C7127.04 (15)N3—C12—H12B109.00O3—C7—N1122.63 (16)C13—C12—H12A109.00O3—C7—C6127.78 (15)C13—C12—H12B109.00N1—C7—C6109.58 (14)H12A—C12—H12B108.00S2—C8—N1115.09 (12)N2—C13—H13A110.00S2—C9—S3122.16 (10)N2—C13—H13B110.00S2—C9—N2112.84 (12)C12—C13—H13B110.00S3—C9—N2125.00 (13)C12—C13—H13B108.00N3—C11—C10111.57 (14)C14—C15—H15120.00N3—C12—C13111.54 (14)C16—C15—H15120.00N2—C13—C12110.59 (14)C15—C16—H16119.00
C5—C6—C7 127.04 (15) N3—C12—H12B 109.00 O3—C7—N1 122.63 (16) C13—C12—H12A 109.00 O3—C7—C6 127.78 (15) C13—C12—H12B 109.00 N1—C7—C6 109.58 (14) H12A—C12—H12B 108.00 S2—C8—N1 115.09 (12) N2—C13—H13A 110.00 S2—C9—S3 122.16 (10) N2—C13—H13B 110.00 S2—C9—N2 112.84 (12) C12—C13—H13A 110.00 S3—C9—N2 125.00 (13) C12—C13—H13B 100.00 N3—C10—C11 110.41 (14) H13A—C13—H13B 108.00 N3—C12—C13 111.57 (14) C14—C15—H15 120.00 N3—C12—C13 111.54 (14) C16—C15—H15 120.00 N2—C13—C12 110.59 (14) C15—C16—H16 119.00
O3-C7-N1 122.63 (16) C13-C12-H12A 109.00 O3-C7-C6 127.78 (15) C13-C12-H12B 109.00 N1-C7-C6 109.58 (14) H12A-C12-H12B 108.00 S2-C8-N1 115.09 (12) N2-C13-H13A 110.00 S2-C9-S3 122.16 (10) N2-C13-H13B 110.00 S2-C9-N2 112.84 (12) C12-C13-H13B 110.00 S3-C9-N2 125.00 (13) C12-C13-H13B 110.00 N2-C10-C11 110.41 (14) H13A-C13-H13B 108.00 N3-C11-C10 111.57 (14) C14-C15-H15 120.00 N3-C12-C13 111.54 (14) C16-C15-H15 120.00 N2-C13-C12 110.59 (14) C15-C16-H16 119.00
O3-C7-C6 127.78 (15) C13-C12-H12B 109.00 N1-C7-C6 109.58 (14) H12A-C12-H12B 108.00 S2-C8-N1 115.09 (12) N2-C13-H13A 110.00 S2-C9-S3 122.16 (10) N2-C13-H13B 110.00 S2-C9-N2 112.84 (12) C12-C13-H13A 110.00 S3-C9-N2 125.00 (13) C12-C13-H13B 110.00 N2-C10-C11 110.41 (14) H13A-C13-H13B 108.00 N3-C11-C10 111.57 (14) C14-C15-H15 120.00 N3-C12-C13 111.54 (14) C16-C15-H15 120.00 N2-C13-C12 110.59 (14) C15-C16-H16 119.00
N1—C7—C6 109.58 (14) H12A—C12—H12B 108.00 S2—C8—N1 115.09 (12) N2—C13—H13A 110.00 S2—C9—S3 122.16 (10) N2—C13—H13B 110.00 S2—C9—N2 112.84 (12) C12—C13—H13A 110.00 S3—C9—N2 125.00 (13) C12—C13—H13B 110.00 N2—C10—C11 110.41 (14) H13A—C13—H13B 108.00 N3—C11—C10 111.57 (14) C14—C15—H15 120.00 N3—C12—C13 111.54 (14) C16—C15—H15 120.00 N2—C13—C12 110.59 (14) C15—C16—H16 119.00
S2—C8—N1 115.09 (12) N2—C13—H13A 110.00 S2—C9—S3 122.16 (10) N2—C13—H13B 110.00 S2—C9—N2 112.84 (12) C12—C13—H13A 110.00 S3—C9—N2 125.00 (13) C12—C13—H13B 110.00 N2—C10—C11 110.41 (14) H13A—C13—H13B 108.00 N3—C11—C10 111.57 (14) C14—C15—H15 120.00 N3—C12—C13 111.54 (14) C16—C15—H15 120.00 N2—C13—C12 110.59 (14) C15—C16—H16 119.00
S2—C9—S3 122.16 (10) N2—C13—H13B 110.00 S2—C9—N2 112.84 (12) C12—C13—H13A 110.00 S3—C9—N2 125.00 (13) C12—C13—H13B 110.00 N2—C10—C11 110.41 (14) H13A—C13—H13B 108.00 N3—C11—C10 111.57 (14) C14—C15—H15 120.00 N3—C12—C13 111.54 (14) C16—C15—H15 120.00 N2—C13—C12 110.59 (14) C15—C16—H16 119.00
S2—C9—N2 112.84 (12) C12—C13—H13A 110.00 S3—C9—N2 125.00 (13) C12—C13—H13B 110.00 N2—C10—C11 110.41 (14) H13A—C13—H13B 108.00 N3—C11—C10 111.57 (14) C14—C15—H15 120.00 N3—C12—C13 111.54 (14) C16—C15—H15 120.00 N2—C13—C12 110.59 (14) C15—C16—H16 119.00
S3—C9—N2 125.00 (13) C12—C13—H13B 110.00 N2—C10—C11 110.41 (14) H13A—C13—H13B 108.00 N3—C11—C10 111.57 (14) C14—C15—H15 120.00 N3—C12—C13 111.54 (14) C16—C15—H15 120.00 N2—C13—C12 110.59 (14) C15—C16—H16 119.00
N2—C10—C11 110.41 (14) H13A—C13—H13B 108.00 N3—C11—C10 111.57 (14) C14—C15—H15 120.00 N3—C12—C13 111.54 (14) C16—C15—H15 120.00 N2—C13—C12 110.59 (14) C15—C16—H16 119.00 N2 C14 C15 C16 119.00
N3—C11—C10 111.57 (14) C14—C15—H15 120.00 N3—C12—C13 111.54 (14) C16—C15—H15 120.00 N2—C13—C12 110.59 (14) C15—C16—H16 119.00 N2 C14 C15 C16 110.00
N3—C12—C13 111.54 (14) C16—C15—H15 120.00 N2—C13—C12 110.59 (14) C15—C16—H16 119.00 N2—C14—C15 122.15 (16) C15—C16—H16 119.00
N2-C13-C12 110.59 (14) C15-C16-H16 119.00
N2 014 015 100 15 (10) 015 016 1116 110 01
N3-C14-C15 122.15 (16) C17-C16-H16 119.00
N3—C14—C19 120.46 (15) C16—C17—H17 121.00
C15—C14—C19 117.36 (17) C18—C17—H17 121.00
C14—C15—C16 120.92 (18) C17—C18—H18 119.00
C15—C16—C17 121.19 (18) C19—C18—H18 119.00
C16—C17—C18 118.4 (2) C14—C19—H19 120.00
C17—C18—C19 121.3 (2) C18—C19—H19 120.00
O1—S1—N1—C7 118.00 (12) C11—N3—C14—C15 -11.6 (2
O2—S1—N1—C7 –110.39 (12) C11—N3—C12—C13 54.79 (1
C1—S1—N1—C7 3.17 (13) C14—N3—C12—C13 -170.76
O1—S1—N1—C8 -40.93 (15) C12—N3—C14—C19 38.5 (2)
O2—S1—N1—C8 90.68 (14) C12—N3—C14—C15 -143.56

C1—S1—N1—C8	-155.76 (13)	C11—N3—C14—C19	170.48 (16)
O1—S1—C1—C2	64.79 (17)	C2-C1-C6-C5	-1.1 (2)
O2—S1—C1—C2	-70.73 (16)	S1—C1—C6—C5	178.41 (13)
N1—S1—C1—C2	176.78 (15)	S1—C1—C6—C7	1.70 (18)
O1—S1—C1—C6	-114.74 (12)	S1—C1—C2—C3	-177.70 (14)
O2—S1—C1—C6	109.75 (12)	C2—C1—C6—C7	-177.85 (15)
N1—S1—C1—C6	-2.75 (12)	C6—C1—C2—C3	1.8 (3)
C8—S2—C9—S3	-0.78 (13)	C1—C2—C3—C4	-1.2 (3)
C8—S2—C9—N2	179.14 (12)	C2—C3—C4—C5	0.0 (3)
C9—S2—C8—N1	95.71 (13)	C3—C4—C5—C6	0.7 (3)
S1—N1—C7—C6	-2.68 (17)	C4—C5—C6—C1	-0.1 (3)
C8—N1—C7—C6	156.68 (14)	C4—C5—C6—C7	176.08 (18)
S1—N1—C8—S2	-119.76 (12)	C5—C6—C7—O3	2.9 (3)
C7—N1—C8—S2	82.59 (17)	C1—C6—C7—N1	0.5 (2)
S1—N1—C7—O3	178.48 (14)	C1—C6—C7—O3	179.30 (18)
C8—N1—C7—O3	-22.2 (3)	C5-C6-C7-N1	-175.89 (16)
C10—N2—C9—S2	-177.89 (13)	N2-C10-C11-N3	57.1 (2)
C13—N2—C9—S2	-0.8 (2)	N3-C12-C13-N2	-55.95 (18)
C10—N2—C9—S3	2.0 (2)	N3-C14-C15-C16	-176.66 (17)
C13—N2—C9—S3	179.14 (13)	C19—C14—C15—C16	1.4 (3)
C9—N2—C10—C11	119.80 (18)	N3-C14-C19-C18	177.54 (18)
C13—N2—C10—C11	-57.72 (19)	C15-C14-C19-C18	-0.5 (3)
C10-N2-C13-C12	57.29 (18)	C14—C15—C16—C17	-1.5 (3)
C9—N2—C13—C12	-120.12 (17)	C15-C16-C17-C18	0.7 (3)
C14—N3—C11—C10	170.49 (14)	C16-C17-C18-C19	0.1 (3)
C12—N3—C11—C10	-55.34 (18)	C17—C18—C19—C14	-0.2 (3)

Symmetry codes: (i) -*x*+1, -*y*, -*z*+1; (ii) -*x*+1, -*y*+1, -*z*+1; (iii) *x*, *y*, *z*-1; (iv) *x*, *y*-1, *z*; (v) -*x*, -*y*+1, -*z*; (vi) -*x*, -*y*, -*z*+1; (vii) -*x*, -*y*+1, -*z*+1; (viii) *x*, *y*, *z*+1; (ix) *x*, *y*-1, *z*+1; (x) *x*, *y*+1, *z*-1; (xi) -*x*+1, -*y*+1, -*z*; (xii) *x*, *y*+1, *z*.

Hydrogen-bond geometry (Å, °)

D—H··· A	<i>D</i> —Н	H···A	$D \cdots A$	$D -\!\!\!-\!\!\!\!- \!$
C2—H2···O2 ⁱ	0.93	2.43	3.226 (2)	143
C8—H8B…S3	0.97	2.54	3.1134 (18)	117
C10—H10A…S3	0.97	2.56	3.075 (2)	113
C13—H13B…S2	0.97	2.38	2.9324 (18)	116
Symmetry codes: (i) $-x+1$, $-y$, $-z+1$.				

Fig. 1

Fig. 2

